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## Exploiting vibrational characteristics in control co- de5|gn

* Resonance frequencies: Operating frequenues
where oscillation amplitudes sharply increase

* Locations based on geometry, mass distribution,

dynamic interconnections
* Points of high cyclic stresses

» Sharpness of peak and slope of phase plot provide

estimate of the amount of damping

* In certain cases operating under resonance

conditions must be avoided
e e.g. wind turbine

* Drive engineering design to appropriately place the

resonance points, or
* Design controllers to reduce bandwidth

* In other applications, resonant oscillation can be

utilized to harvest energy
* e.g. Resonant wave energy harvesting

* M. Garcia-Sanz, “Robust Control Engineering,” CRC Press, 2017
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## Exploiting vibrational characteristics (Wind Turbines, Wave Energy)

e Under high wind speeds, blade pitch control is essential o
for capping the power output and for protecting fers.
mechanical components ¢ e

Rotor excitation

* Such high wind speeds could excite excessive vibrations in the o e o e
structure (hence a need to prevent resonance) ,.’ e

. . |5 mile B 70 LTS o
* |solated blade pitch controllers may overlook this issue et Tha Nf—DC_2Q

 Lumped parameter 3DOF vibration models, capture potential

Transformer

resonance situations enabling more practical control design* Rotor e =N
 The exercise shows how dynamic vibration absorption or | %:g; o
mechanical design iterations (i.e. control co-design) could [,
improve overall system characteristics. ',: beb °\’ﬂ '
* [n wave energy converters, resonance conditions are T aouied b e
desired to maximize energy harvesting** Foundation -]

* The concept is utilized in resonant driven buoys whose natural
frequency is tuned to match that of the waves.
* M. Garcia-Sanz, “Robust Control Engineering,” CRC Press, 2017

**D. A. Gemme, H. R. Greene Il, T. A. Tucker, R. B. Sepe Jr., S. P. Bastien, “Hybrid Resonant Wave Energy Harvesting Buoy for
Sensor Applications,” 2013 OCEANS, San Diego



## Nonminimum-Phase (NMP) Zero™ ™"

* An NMP zero poses constraints on robust stability

* NMP zeros have positive real parts

 An NMP zero reduces robustness by reducing Gain and
Phase margins (GM and PM) (bandwidth limitations)

* Characterized by an initial inverse response to step input

 Pole NMP-zero cancellation introduces or retains
internal instability

 To address constraints due to NMP zeros:

e Use control strategies, e.g. change input/output
variable(s), use of feedforward action

* Adopt co-design approach: Revisit system design and
change sensing/actuation configurations or change
dynamic characteristics

* M. Garcia-Sanz, “Robust Control Engineering,” CRC Press, 2017
** ]. B. Hoagg, D. S. Bernstein, “Nonminimum-Phase Zeros,” IEEE Control Systems
Magazine, June 2007
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## Control-Configured Underwater Vehicle™

* A spheroidal underwater surveillance/
inspection robot with no appendages or fins
for locomotion

e Ability to turn in place, conduct precise inspection
* Agile and causing minimum water perturbation
* Minimum interference or collision during task

* The shape has inherent instabilities (e.g.
Munk moment) but is well-suited for tasks

* Fixed-angle jets were designed for control

 Jets were designed to prevent NMP characteristics
and uncontrollable modes

* Inward angled jets led to unstable but easily _
stabilizable dynamics et ¥ ¥iero

e Actuations designed to aid controllability

* A. Mazumdar, H. H. Asada, “Control-Configured Design of Spheroidal, Appendage-Free, Underwater Vehicles,” IEEE Trans.
Robotics, Vol. 30, No. 2, April 2014




## Control-Configured Underwater Vehicle™

* Transfer function of linearized dynamics
AY(s) (sGumy + Am,U.GF sinvyy)

AV (s) s (myl,s* —U2mAm,)

* Parallel jets: Pole-zero cancellation
* No control on side-slip
* Loss of controllability

* Inward jets:
* Both side-slip and Munk moment opposed

(c)

* Zero in LHP im] L by
. ¢ )(je Re Re
e Qutward jets: é\ i e e
 Cancelling one tends to amplify the other Nl Y
* NMP zero 7, =0 =80 =30

) (a) (b) (¢)
* Note: Unstable in all cases

* A. Mazumdar, H. H. Asada, “Control-Configured Design of Spheroidal, Appendage-Free, Underwater Vehicles,” IEEE Trans.
Robotics, Vol. 30, No. 2, April 2014




## MIMO systems: Heat exchanger control™

* MIMO systems are dynamically coupled

* Transfer function is a matrix instead of scalar

* Typical control methods involve pairing of specific input

variables to specific output variables

* The pairing can be based on Relative Gain Array (RGA)

analysis and/or analysis of the dynamic equations

 However, the inherent coupling that will still exist
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* M. Garcia-Sanz, “Robust Control Engineering,” CRC Press, 2017
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Simulation of closed loop MIMO system

## MIMO: Heat exchanger control*® Ei
1. [ e e —
* Internal coupling persists in pairing based = 1IN A
control _ | :
» Set point changes in references cause perturbation Té. j i ﬁ
in the coupled variables st TN
* Desire a performance to achieve the result shown % 1 | \
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* E.g. feedback based decoupling, redefining control inputs ‘:j i h\ A
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